
Ihre Bewerbungsdaten
Egal, ob Sie eine Stelle für den Berufseinstieg suchen oder bereits Berufserfahrung mitbringen:
Bei uns werden Sie fündig!

Informationen zur Stelle
Stelle:
Scientific Assistant (f/m/d) - Peptide Engineering: Molecular Modeling, Machine Learning and Quantum Chemical Approaches
Unternehmen:
Technische Universität Berlin
Anforderungen:
Requirements
Completed university studies (Master/Diploma/PhD) in the field of Biology, Chemistry, Biochemistry, Physical or Theoretical Chemistry or related disciplines
Profound knowledge in at least one of the following areas: molecular dynamics, Quantum chemistry (e.g. DFT) AI methods in structural biology or chemoinformatics
Experience with biophysical characterization methods such as circular dichroism (CD) measurements, dynamic light scattering (DLS) measurements, isothermal titration microcalorimetry (ITC) measurements, absorption spectroscopy, nuclear magnetic resonance spectroscopy (NMR) and liquid chromatography coupled mass spectrometry (LC-MS) is desirable
Initial experience in publishing/scientific writing is desirable
Previous knowledge of Python and machine learning frameworks (e.g. PyTorch, TensorFlow)
Ability to carry out independent scientific work as well as creative problem-solving development
Open-ness towards working in an interdisciplinary and international team
English spoken and written (laboratory and colloquial language of the team)
Aufgaben:
Tasks
Development of theoretical models of circular, palladium-binding peptides
Literature research on metal-binding organic molecules as design templates
Execution of classical molecular dynamics simulations
Application and further development of AI-supported methods for structure prediction and optimization
Quantum mechanical simulations (e.g. DFT, QM/MM) to characterize the palladium bond